

S​UPPORT​ S​YSTEMS​ ​FOR​ M​ODERN​ C​ODE​ R​EVIEWS​ (II)

This briefing reports scientific evidence of
20 studies that investigate support systems
related to the understanding of code
changes and managing code reviews.

FINDINGS
Understanding the code changes that need to be
reviewed.
Refactoring changes code structure to improve
testability, maintainability, and quality without
changing its behavior. Supporting the review of such
changes has been the focus of refactoring-aware
tools.
Refdistiller aims at detecting behavior-changing edits
in manual refactorings [D3]. The tool uses two
techniques: (a) a template-based checker that finds
missing edits; and (b) a refactoring separator that
finds extra edits that may change a program’s
behavior. In a survey of 35 developers of the Gerrit
project, researchers found that it would be useful to
differentiate between refactored and
behavior-changing code, making reviews more
efficient and correct.
ReviewFactor is a tool able to detect both manual
and automated refactorings (made in an IDE) [D9].
The evaluation of the tool showed that it can detect
behavior-changing refactorings with high precision
(92%) and recall (94%). When it does not detect
them, it fails because the interleaving of refactoring
and non-refactoring changes, and the composite of
multiple refactorings.
CRITICS is an interactive approach to review
systematic code changes [D10]. It allows developers
to find changes similar to a specified template,
detecting potential mistakes. The evaluation
indicates that: (a) six engineers at Salesforce, who
used the tool, would like to have it integrated in
their review environment; and (b) the tool can
improve reviewer productivity, compared to a
regular diffing tool.
An inspection of 453 code changes in open source
projects revealed that up to 29% of the changes are
composite, i.e., address different concerns [D16].
The researchers propose automatically separating
unrelated code changes to create cohesive and
self-contained sub-changes that are easier to
understand. A preliminary user study suggests that
the understanding of code did indeed improve when
the changes were partitioned.
Other research looked into the order in which
changed files should be presented to the reviewer to
achieve an effective review process [D1]. The study
used logged review navigation data, interviews and
an online survey to determine the following main
principle for the ordering: group related change
parts as closely as possible.
Another contribution to improve the understanding
of changed code suggests identifying the so-called
“salient” class, i.e., the class in which the main
change was made and which affects changes in other
dependent classes [D11]. The researchers
hypothesize that reviews could be more efficient if
the salient class would be known, making the logic of
the commit easier to understand. A preliminary
evaluation (questionnaire-based) with 14
participants showed that the knowledge about the
salient class improves the understanding of a
commit.
A similar idea is implemented in BLIMP tracer, which
inspects the impact of changes on a file level, rather
than on a class level [D14]. The tool was evaluated
with 45 developers at Dell EMC and the researchers

found that it improved speed and accuracy of
identifying the artifacts that are impacted by a code
change. Furthermore, the researchers observed that
the tool helped to better understand the system
architecture.
MultiViewer is a code change review assistance tool
that calculates metrics to better understand the
change effort, risk, and impact of a change request
[D20].
A step further goes the approach implemented in
the tool GETTY, which aims at providing meaningful
change summaries by identifying changed invariants
through analyzing code differences and test run
results [D12]. With GETTY, reviewers can more easily
determine if a set of code changes have produced
the desired effect. The approach was evaluated with
the participation of 18 practitioners. The main
finding was that GETTY substantially modified the
review process to a hypothesis-driven. This process
change led to better review comments.
Another direction of research for improving code
understanding for reviews uses visualization of
information. For example, ViDI supports visual
design inspection and code quality assessment
[D15]. The tool uses static code analysis reports to
identify and visualize critical areas in code, display
the evolution of the amount of issues found in a
review session, and allow the reviewer to inspect the
impact of code changes.
Another tool called Git Thermite focuses on
structural changes made to source code [D13]. The
tool analyzes and visualizes data (metadata gathered
from GitHub, code metrics for the modified files, and
static source code analysis of the changes) from pull
requests.
OPERIAS, yet another tool, focuses on the particular
problem of understanding how particular changes in
code relate to changes to test cases [D18]. The tool
visualizes source code differences and a change’s
coverage impact.
Finally, a tool was developed to improve the review
process of visual programming languages (such as
Petri nets) [D7]. It supports the code review of visual
programming languages, similar to what is already
possible with textual programming languages (diffs,
discussion threats, bug tracking integration, file lists,
participant list, and notifications).
What we think: There has been a wide range of
research on improving the understanding of changed
code, patches and pull requests, spanning from
rearranging information, showing the impact to
visualize changes. Many of the approaches are,
however, prototypes and have not been shown to be
effective, beyond the proof of concept. While some
evaluation results are impressive, investigations on
the practical benefit of the approaches, in particular
on the efficiency and quality of reviews, are needed.
Managing code reviews.
Before code hosting platforms, such as Github,
became popular and supported code reviews,
researchers investigated how to provide support for
reviews in IDEs. SeeCode integrates with Eclipse and
provides a distributed review environment with
review meetings and comments [D26].
Similarly, ReviewClipse supports a continuous
post-commit review process [D28].
Scrub combines regular peer reviews with reports
from static source code analyzers in a standalone
application [D5].
Java Sniper is a web-based, collaborative code
reviewing tool [D25].
All these early tools have been outlived by modern
code hosting and reviewing infrastructure services
such as GitHub, GitLab, BitBucket, Review Board, and
Gerrit. However, while these platforms provide basic

code reviewing functionalities, research has also
looked at improving the reviewing process in
different ways [D2].
For example, researchers suggested continuous
code reviews that allow anyone to comment code
they are reading or reusing, e.g., from libraries
[D27]. Developers can then push questions and
comments to upstream authors from within their
IDE, without context switching.
Fistbump is a collaborative review platform built
on top of GitHub, providing an iteration-oriented
review process that makes it easier to follow
rationale and code changes during the review
[D29]. Furthermore, the tool integrates issue
management directly into the displayed source
code, supports real time updates, and can show
entire files (not only changed code) during
reviews.
What we think: Code review management
(creating a review, assigning reviewers, enabling
discussions) is now supported by many mainstream
software development platforms. Current and
future research seems to focus on integrating code
review closer into the development process to
reduce the negative effect of context switching and
to streamline the review information so that the
decisions made in the process contribute to
knowledge and rationale of the performed
changes.

References

ID Title Link

D1 On The Optimal Order Of Reading Source Code Changes For Review https://www.sback.it/publications/icsme2017.pdf

D2 On The Need For A New Generation Of Code Review Tools http://tobias-baum.de/rp/reviewtools.pdf

D3

Refdistiller: A Refactoring Aware Code Review Tool For Inspecting

Manual Refactoring Edits http://web.cs.ucla.edu/~miryung/Publications/fse2014demo-refdistiller.pdf

D5 Scrub: A Tool For Code Reviews https://spinroot.com/gerard/pdf/ScrubPaper_rev.pdf

D7 Code Review Tool For Visual Programming Languages Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D9 Refactoring-Aware Code Review https://people.engr.ncsu.edu/ermurph3/papers/vlhcc17-refactoring.pdf

D10 Interactive Code Review For Systematic Changes http://web.cs.ucla.edu/~tianyi.zhang/critics.pdf

D11

Salient-Class Location: Help Developers Understand Code Change In

Code Review Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D12

Semantics-Assisted Code Review: An Efficient Tool Chain And A User

Study https://par.nsf.gov/servlets/purl/10061392

D13 Pharo git thermite a visual tool for deciding to weld a pull request http://bergel.eu/MyPapers/Salg17-GitThermite.pdf

D14 Blimp Tracer: Integrating Build Impact Analysis With Code Review http://rebels.ece.mcgill.ca/papers/icsme2018_wen.pdf

D15 Code Review: Veni, Vidi, Vici http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.2634&rep=rep1&type=pdf

D16 Partitioning Composite Code Changes To Facilitate Code Review http://home.cse.ust.hk/~hunkim/papers/tao-msr2015.pdf

D18 Visualizing Code And Coverage Changes For Code Review http://www.gtii.sback.it/publications/fse2016td.pdf

D20 Multi-Perspective Visualization To Assist Code Change Review

https://www.researchgate.net/profile/Peng_Liang4/publication/322987202_Multi-Perspective_Visua

lization_to_Assist_Code_Change_Review/links/5a7b05060f7e9b41dbd74df3/Multi-Perspective-Visual

ization-to-Assist-Code-Change-Review.pdf

D25

Design And Implementation Of Java Sniper - A Community-Based

Software Code Review Web Solution Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D26 Seecode - A Code Review Plug-In For Eclipse Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D27

Continuous Code Reviews: A Social Coding Tool For Code Reviews Inside

The Ide

http://hpi.uni-potsdam.de/hirschfeld/publications/media/Duerschmid_2017_ContinuousCodeReview

s_AcmDL.pdf

D28 Adopting Code Reviews for Agile Software Development http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.7668&rep=rep1&type=pdf

D29 A Collaborative Code Review Platform For Github Please contact one of the authors of this evidence briefing to receive a copy of this paper.

http://web.cs.ucla.edu/~miryung/Publications/fse2014demo-refdistiller.pdf
https://people.engr.ncsu.edu/ermurph3/papers/vlhcc17-refactoring.pdf
http://web.cs.ucla.edu/~tianyi.zhang/critics.pdf
https://par.nsf.gov/servlets/purl/10061392
http://bergel.eu/MyPapers/Salg17-GitThermite.pdf
http://rebels.ece.mcgill.ca/papers/icsme2018_wen.pdf
https://drive.google.com/open?id=18aXjHw89ZQDc9URfT_sV9cMyr0DbMmM_
https://drive.google.com/open?id=1eHblHw45yz9l8Zs94Ad17a-_XPg3v2cQ
https://www.researchgate.net/profile/Peng_Liang4/publication/322987202_Multi-Perspective_Visualization_to_Assist_Code_Change_Review/links/5a7b05060f7e9b41dbd74df3/Multi-Perspective-Visualization-to-Assist-Code-Change-Review.pdf
https://www.researchgate.net/profile/Peng_Liang4/publication/322987202_Multi-Perspective_Visualization_to_Assist_Code_Change_Review/links/5a7b05060f7e9b41dbd74df3/Multi-Perspective-Visualization-to-Assist-Code-Change-Review.pdf
https://www.researchgate.net/profile/Peng_Liang4/publication/322987202_Multi-Perspective_Visualization_to_Assist_Code_Change_Review/links/5a7b05060f7e9b41dbd74df3/Multi-Perspective-Visualization-to-Assist-Code-Change-Review.pdf
http://hpi.uni-potsdam.de/hirschfeld/publications/media/Duerschmid_2017_ContinuousCodeReviews_AcmDL.pdf
http://hpi.uni-potsdam.de/hirschfeld/publications/media/Duerschmid_2017_ContinuousCodeReviews_AcmDL.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.7668&rep=rep1&type=pdf

